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A new finite volume method is presented for discretizing the two-dimensional Maxwell
equations. This method may be seen as an extension of the covolume type methods to arbi-
trary, possibly non-conforming or even non-convex, n-sided polygonal meshes, thanks to
an appropriate choice of degrees of freedom. An equivalent formulation of the scheme is
given in terms of discrete differential operators obeying discrete duality principles. The
main properties of the scheme are its energy conservation, its stability under a CFL-like
condition, and the fact that it preserves Gauss’ law and divergence free magnetic fields.
Second-order convergence is demonstrated numerically on non-conforming and distorted
meshes.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The finite-difference time-domain (FDTD) method is a widely used numerical technique to approach the solution of the
time-dependent Maxwell equations. In its original formulation, as proposed by Yee [1], this scheme is written on a uniform
Cartesian grid, which is of course a severe restriction for its use in modern engineering issues. Therefore, this scheme has
known numerous developments and generalizations that extend its use to complex geometries and unstructured or locally
refined meshes. For a recent review of these developments, we refer the reader to [2].

One of these generalizations is the so-called ‘‘control region” or ‘‘covolume” scheme, proposed in [3–6] and analyzed for
the time-domain equations in [7,8]. The covolume scheme employs Voronoi–Delaunay mesh pairs to replace the rectangular
staggered meshes of Yee’s scheme. Restricting to two-dimensional meshes for the sake of clarity and to the transverse mag-
netic (TM) mode (although the discussion also holds for the transverse electric mode), the unknowns of this scheme are the
values of the magnetic field at the centers of the cells of the primal mesh, and the tangential components of the electric field
along the sides of the primal mesh. Then, Faraday’s law is integrated over the primal cells and the tangential component of
Ampère’s law is integrated along the sides of the dual mesh.
. All rights reserved.
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A first advantage of this scheme is that it may be applied to more general domains of R2 or R3 and to a much wider class of
meshes than Yee’s scheme. However, the orthogonality relation between the two meshes sets a limitation to the use of the
method, particularly in the context of mesh refinement or coarsening, since these processes may lead to non-conforming
cells. A second advantage of this scheme is that the magnetic field remains divergence free and that a discrete equivalent
of Gauss’ law holds, provided the charge and current densities that act as source terms in the Maxwell equations verify a
discrete analogue of the charge conservation equation. This point was addressed in [6]. A third advantage is that the method
is non-dissipative since it can be proved that a discrete analogue of the electromagnetic energy is conserved as soon as the
media is itself non-dissipative. Finally, the method has been proved to be first-order convergent in [7] for general grids and
second-order convergent for Cartesian rectangular grids.

In this article, we propose a generalization of the covolume scheme to two-dimensional non-orthogonal (almost) arbi-
trary meshes, including in particular meshes with non-conforming or non-convex cells. For the TM mode, the unknowns
of our scheme are the values of the magnetic field at the centers of the cells of both the primal and dual cells, as well as both
components of the electric field on the sides of the primal and dual meshes. The discretization is simply performed by inte-
grating Faraday’s law on the cells of both the primal and dual meshes and by integrating both components of Ampère’s law
over the sides of the mesh. The above-mentioned advantages of the covolume scheme are preserved through this extension.
Moreover, the scheme can be proved to be conditionally stable under a CFL-like condition which degenerates to the usual
stability condition of Yee’s scheme on regular Cartesian grids. The scheme easily extends to anisotropic media with discon-
tinuous permittivity and permeability tensors. Our numerical tests also show that the results are highly independent of the
mesh skewness or non-conformity.

Of course, there are other schemes which share advantages of that presented here. We may cite for example finite ele-
ment time domain methods which may be applied on unstructured meshes and may preserve a discrete energy when prop-
erly time-discretized. The reader is referred for example to [9] for edge elements and to [10,11] for nodal elements. However,
their use on non-conforming locally refined meshes requires the introduction of Lagrange multipliers (see for example
[12,13] for space refinement only and [14–16] for space–time refinement); moreover, the efficient implementation of edge
elements require lumping of mass matrices, which is still the subject of significant research (see for example [17]). The abil-
ity of finite element methods to preserve globally divergence free field (or Gauss’ law) is also questionable if care is not taken
in the variational formulation [18–20] and a correction step [10] may be required. Finite volume ideas borrowed from the
field of computational fluid dynamics (hereafter named FVCFD) have also been used over the past fifteen years to gain flex-
ibility in the meshes used and robustness in the presence of strong gradients [21–25]. However, the preservation of Gauss’
law also requires special treatments [26–28] which make the computations heavier, and these methods fail in conserving a
discrete energy; this numerical dissipation limits their use to relatively short-time computations. More recently, finite vol-
ume methods that preserve a discrete energy have been developed in [29,30] and can be used on very general grids. How-
ever, on Cartesian square grids of spatial dimension d = 1, 2 or 3, with mesh step size h, this scheme reduces to 2d Yee
schemes on 2d staggered grids of mesh step size 2h. Thus, in order to obtain an equivalent accuracy as that of Yee’s scheme,
one has to use grids which are twice finer in each direction, which implies of course much greater computer costs. To im-
prove accuracy on a given grid, this finite volume method has been generalized in [31] to yield a discontinuous Galerkin time
domain (DGTD) method of arbitrary order of accuracy (see also [32] for its use on Cartesian locally refined grids). Note how-
ever that, as usual with higher-order methods, the improvement in the order of convergence is limited by the regularity of
the solution itself; this is a fundamental issue since in the presence of non-convex domains with reentrant corners (a situ-
ation which is often met in practical engineering problems) the solution of Maxwell’s equations is singular (see [33]). Various
ways have been proposed to overcome this loss of accuracy due to singularities. In the context of time-harmonic solutions,
we may cite h=p adaptivity [34–37] and weighted regularization techniques [38]. As far as the time-dependent problem is
concerned, weighted regularization techniques [39] and the singular complement method [40,41] have been used, but, to
our knowledge, have not been extended so far to convergence orders greater than one. This clearly shows that there is still
a need for efficient low order methods. In addition, in the DGTD methods considered in [31,32], conservation of the diver-
gence free character of the fields is ensured only in a weak sense, and nothing is said about the possible violation of Gauss’
law in the presence of charge and current densities. Another approach proposed in [42] is to use a DGTD method with locally
divergence free basis functions together with a projection on globally divergence free functions, but of course this method
should be reconsidered in the case of non-vanishing charge and current densities. Moreover, this method is based on upwind
fluxes like FVCFD methods, and does not exactly preserve a discrete energy, although a modification of this method in order
to use centered fluxes in the spirit of [31,32] may be considered. Another DGTD method based on standard node-based piece-
wise polynomial spaces (which limits its use to simplices only) may be found in [43], where the divergence free character of
the fields is left to the accuracy of the solver. In the presence of charge and current densities, the scheme has to be corrected,
involving heavier computations [44]. Finally, we may also cite [45,46] in which discontinuous Galerkin methods over space–
time simplices are presented and analyzed. These methods have the advantage of having local stability constraints (larger
elements use larger time-steps), but nothing is said concerning the preservation of Gauss’ law or the conservation of a dis-
crete energy.

The scheme we present is an extension to Maxwell’s equations of two visions of recent ideas that were developed by the
authors to approach diffusion equations and related problems. In [47–50], a finite volume method was presented for the
approximation of diffusion equations on distorted meshes; it is based on a geometric approach of finite volumes. On the
other hand, in [51–53], equivalent schemes were designed based on the derivation of discrete differential operators like
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divergence, gradient and curl. Since these discrete operators satisfy discrete analogues of the Green formula, this class of
methods has been named ‘‘discrete duality finite volume (DDFV)” methods. These discrete operators also share properties
verified by the continuous operators, like the existence of a discrete Hodge decomposition of vector fields and the property
that the divergence of a curl vanishes. This is a key ingredient in proving that the present scheme verifies Gauss’ law. These
properties show that our scheme is strongly related to the so-called ‘‘generalized finite differences” approach, see [54] and
the numerous references therein. However, in the DDFV method, the ‘‘discrete Hodge operator” e (we use here the terminol-
ogy of [54]), which relates the discrete electric field E to the discrete electric displacement D by the relation D ¼ eE, is diag-
onal even if the primal and dual meshes are not orthogonal. This is a great advantage over methods related to that presented in
[54], since we avoid the whole Whitney form machinery and the induced interpolations. We mention that DDFV methods
have been successfully applied to non-linear diffusion problems [48,55], drift-diffusion and energy-transport models
[56,57] and to the 2-D and 3-D bi-domain equations of electro-cardiology [58]. In the present work, we show that both vi-
sions, as developed in [47–50,59] on the one hand and in [51–53] on the other hand can be used to construct the scheme and
to prove its properties.

The extension of our method to three-space dimensions is not straightforward. Several ways can be investigated and we
have not tested so far which of these could provide the best numerical results. One such way is outlined in the Appendix.

The organization of the paper is as follows. Section 2 is devoted to the definition of what we call the primal and dual
meshes and the related notations. Section 3 is concerned with the Maxwell equations in two space dimensions. The pro-
posed method is set out in Section 4 in the general framework of inhomogeneous media. Section 5 describes a slightly
different point of view based on the discretization of the involved differential operators. For the sake of simplicity this
point of view has been detailed for a homogeneous medium. Then, in Section 6, we compare the stability constraint
and the complexity of the present method with those of other techniques. Finally, several numerical experiments are pre-
sented in Section 7.
2. Primal and dual meshes: definitions and notations

Given X, a bounded polygonal domain, we consider a mesh on X (called primal mesh) made up of arbitrary (possibly dis-
torted, non-conforming or non-convex) n-sided polygons. With each (primal) element Pp of this mesh we associate one (pri-
mal) point np: the centroid is a qualified candidate but other points could be chosen. By connecting these primal points and
the midpoints ns of the sides, we obtain a second mesh on X (called indirect dual mesh: see Fig. 1).

With each (dual) element Pd of this mesh, we can associate one vertex of the primal mesh that will be denoted by xd.
In addition to the indirect dual mesh, other possible definitions of the dual mesh could be used such as the two following

ones:

1. The most simple example is the so-called direct dual mesh, obtained by connecting only the primal points. Fig. 2 (bottom-
left) displays a 2-D sample of such a dual mesh.
Fig. 1. A sample 2-D non-conforming primal mesh (solid lines) and its associated indirect dual mesh (dashed lines).



Fig. 2. A sample Delaunay primal mesh made up of three triangles, two quadrilaterals and one pentagon, all inscribed in a ball, (solid lines, top-left) and its
Voronoi dual mesh (dashed lines, top-right), its direct dual mesh (dashed lines, bottom-left) and its indirect dual mesh (dashed lines, bottom right). Unlike
the Voronoi dual mesh note that the direct and the indirect dual meshes may always be defined, even if the primal mesh is not a Delaunay mesh.
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2. The second important example is the Voronoi mesh. Assume that each primal polygon can be inscribed in an open ball
that does not contain any vertex (that is to say the primal mesh is a Delaunay mesh: see Fig. 2(top-left)). If all the ball
centers are contained in X, they can be chosen to be the primal interior points, although some of them may not belong
to their primal cell. By connecting these primal points and the primal boundary points, we obtain the so-called Voronoi
dual mesh, whose sides are perpendicular to the primal sides. Fig. 2(top-right) displays a 2-D sample of Voronoi mesh. For
more precisions see [60–63] and the bibliographies mentioned therein.

In the following we (incorrectly) define a ‘‘side” as being the one-dimensional boundary shared by two polygons. In con-
sequence of this definition one notice that the vertices of a dual side need not be collinear (see for example the side Rs in Fig.
3).

For the sake of clarity the geometrical objects related to the primal (dual) mesh are denoted by roman (Greek) letters and
the vectors are denoted in bold.

Let us denote by (Fig. 3):

– PpðPdÞ the primal (dual) polygon associated with the point npðxdÞ,
– kPpkðkPdkÞ the area of PpðPdÞ,
– Ss ¼ xdxeðRsp ¼ npns;Rsq ¼ nsnq;Rs ¼ npnsnqÞ the side(s) of a primal (dual) polygon,
– jSsjðjRspj; jRsqj; jRsj ¼ jRspj þ jRsqjÞ the length of SsðRsp;Rsq;RsÞ,
– Q s the quadrilateral npxdnqxe (often called diamond cell) associated with Ss and Rs,
– Q spðQ sqÞ the degenerate quadrilateral npxdnsxeðnqxensxdÞ,
– kQ sk; kQ spk; kQ sqk the areas of Q s;Q sp;Q sq,
– ns the unit outward normal vector on the side Ss of Pp,
– ts the unit counterclockwise tangent vector on the side Ss of Pp,
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Fig. 3. Two primal (dual) polygons Pp; PqðPd ;PeÞ sharing the side Ss ¼ xdxeðRs ¼ Rsp [ Rsq ¼ npnsnqÞ. The dual polygon Pd may be either an interior one
(left) or a boundary one (right).
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– mspðmsqÞ the unit outward normal vector on the side RspðRsqÞ of Pd,
– sspðssqÞ the unit clockwise tangent vector on the side RspðRsqÞ of Pd,
– hspðhsqÞ the angle between ts and mspðmsqÞ,
– csp ¼ cos hspðcsq ¼ cos hsqÞ and ssp ¼ sin hspðssq ¼ sin hsqÞ,
– cs ¼ csp jRsp jþcsq jRsq j

jRsp jþjRsq j and ss ¼ ssp jRsp jþssq jRsq j
jRsp jþjRsq j .

One can note that
kQ spk ¼
1
2

cspjSskRspj; kQ sqk ¼
1
2

csqjSskRsqj; ð1Þ

kQ sk ¼ kQ spk þ kQ sqk ¼
1
2

csjSskRsj; ð2Þ

msp ¼ cspts � sspns; msq ¼ csqts � ssqns; ð3Þ

ssp ¼ cspns þ sspts; ssq ¼ csqns þ ssqts: ð4Þ
3. Maxwell’s equations

Let us denote by

– x ¼ ðx; yÞ the position and t the time,
– q ¼ qðx; tÞ the charge density,
– j ¼ jðx; tÞ ¼ ðjxðx; tÞ; jyðx; tÞÞ and j ¼ jzðx; tÞ the current density and the perpendicular current density,
– e ¼ eðxÞ and l ¼ lðxÞ the electric permittivity and the magnetic permeability,
– H ¼ Hðx; tÞ ¼ ðHxðx; tÞ;Hyðx; tÞÞ and B ¼ lH ¼ ðBxðx; tÞ;Byðx; tÞÞ the magnetic field and the magnetic induction,
– H ¼ Hzðx; tÞ and B ¼ lH ¼ Bzðx; tÞ the perpendicular magnetic field and the perpendicular magnetic induction,
– E ¼ ðExðx; tÞ; Eyðx; tÞÞ and D ¼ eE ¼ ðDxðx; tÞ;Dyðx; tÞÞ the electric field and the displacement current,
– E ¼ Ezðx; tÞ and D ¼ eE ¼ Dzðx; tÞ the perpendicular electric field and the perpendicular displacement current,
– t the unit counterclockwise tangent vector along the boundary oX,
– a ¼ aðxÞ; b ¼ bðxÞ positive functions defined on oX,
– g ¼ gðxÞ a function defined on oX.
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Given u and v ¼ ðvx; vyÞ a scalar and a vector function, we denote
$u ¼ ou
ox
;
ou
oy

� �
; $� u ¼ ou

oy
;� ou

ox

� �

and
$ � v ¼ ovx

ox
þ ovy

oy
; r� v ¼ ovy

ox
� ovx

oy
:

The fields H;B;E;D are solutions to the 2-D Maxwell equations in the transverse magnetic mode of polarization
oB
ot þr� E ¼ 0 in ½0; T� �X ðFaraday’s lawÞ;
oD
ot � $� H ¼ �j in ½0; T� �X ðAmpere—Maxwell’s lawÞ;
$ � D ¼ q in ½0; T� �X ðGauss’ lawÞ;
aE � t � bH ¼ g on ½0; T� � oX;

8>>><>>>: ð5Þ
while the fields H;B; E;D are solutions to the 2-D Maxwell equations in the transverse electric mode of polarization
oB
ot þ $� E ¼ 0 in ½0; T� �X ðFaraday’s lawÞ;
oD
ot �r� H ¼ �j in ½0; T� �X ðAmpere—Maxwell’s lawÞ;
$ � B ¼ 0 in ½0; T� �X;

aEþ bH � t ¼ g on ½0; T� � oX:

8>>><>>>: ð6Þ
Note that the following boundary conditions:

– perfect conductor (a ¼ 1; b ¼ 0; g ¼ 0),
– magnetic wall (a ¼ 0; b ¼ 1; g ¼ 0),
– Silver–Muller condition (a ¼ 1, b ¼ e�

1
2l1

2)

are embodied in the quite general last equation of (5) and (6). Let us recall that the third equation of (5) (Gauss’ law) is sat-
isfied at any time, provided it is satisfied at the initial time and if the charge conservation law
oq
ot
þ $ � j ¼ 0 in ½0; T� �X
holds. Similarly the third equation of (6) is satisfied at any time, provided it is satisfied at the initial time.
If U and S stand for the electromagnetic energy density and the Poynting vector
U ¼ 1
2
ðD � E þ BHÞ and S ¼ E � H ¼ HzðEy;�ExÞ;
the energy equation associated with (5) reads
oU
ot
þ $ � S ¼ �j � E; ð7Þ
while the energy equation associated with (6) would read
oeU
ot
þ $ � eS ¼ �jE
with
eU ¼ 1
2
ðDEþ B � HÞ and eS ¼ E� H ¼ Ezð�Hy;HxÞ:
4. Approximation of the Maxwell equations

Let us focus on Eq. (5). In what follows, we will suppose that H;E � t;D � n are continuous at the interface between two
cells and we will denote by

– ep;lp;qp;Hp and Bp ¼ lpHp approximations of e, l;q;B and H at the point np in Pp,
– qd;Hd approximations of q;H at the point xd in Pd and Bdp ¼ lpHd an approximation of B in Pd \ Pp,
– Hs an approximation of H at the point ns,
– as; bs approximations of a; b at the (boundary) point ns,
– ad; bd approximations of a; b at the (boundary) point xd,
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– js an approximation of j in Q s,
– jd � nd ¼ 1

joPd\oXj
R

oPd\oX
j � n (for xd 2 oX),

– Esp and Esq approximations of E in Q sp and Q sq such that
Esp � ts ¼ Esq � ts ¼def Es � ts;
– Dsp ¼ epEsp and Dsq ¼ eqEsq approximations of D in Q sp and Q sq such that
Dsp � ns ¼ Dsq � ns ¼def Ds � ns;
– Ed � td ¼
def 1

joPd\oXj
R

oPd\oX
E � t (for xd 2 oX),

– Dd � nd ¼
def 1

joPd\oXj
R

oPd\oX
D � n (for xd 2 oX).

Furthermore we will denote by

– es ¼ epcsp jRsp jþeqcsq jRsq j
csp jRsp jþcsq jRsq j a first approximation of e in Q s,

– �es ¼ epeqðcsp jRsp jþcsq jRsq jÞ
eqcsp jRsp jþepcsq jRsq j a second approximation of e in Q s,

– ld ¼
P

Pp
lp

kPd\Ppk
kPdk

an approximation of l at the point xd.

The degrees of freedom of our method will be Hp;Hd;Hs (if ns 2 oX), Es � ts;Ds � ns, Ed � td (if xd 2 oX) and Dd � nd (if xd 2 oX).

4.1. Space-discretization: the finite volume method

For example consider the system (5). As proposed in [59] let us perform the following operations

– integrate the first (Faraday) equation over each primal polygon Pp and over each sub-polygon Pd \ Pp,
– take the flux of the second (Ampere–Maxwell) equation over each primal (dual) side(s) SsðRsp;RsqÞ and over each

(dual) boundary side oPd \ oX.

Thereby we obtain, after using standard vector identities:
o
ot

R R
Pp

B
� �

þ
R

oPp
E � t ¼ 0;

o
ot

R R
Pd\Pp

B
� �

þ
R

Pd\oPp
E � t �

R
oPd\Pp

E � s ¼ 0;

o
ot

R
Ss

D � ns

� �
�
R

Ss
$H � ts ¼ �

R
Ss

j � ns;

o
ot

R
Rsp

D:msp

� �
þ
R

Rsp
$H � ssp ¼ �

R
Rsp

j � msp;

o
ot

R
Rsq

D:msq

� �
þ
R

Rsq
$H � ssq ¼ �

R
Rsq

j � msq;

o
ot

R
oPd\oX

D � n
� �

�
R

oPd\oX
$H � t ¼ �

R
oPd\oX

j � n:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð8Þ
Using the approximations introduced at the beginning of this section provides
kPpk oBp
ot þ

P
Ss2oPp

jSsjEs � ts ¼ 0;

kPd \ Ppk
oBdp
ot þ

R
Pd\oPp

E � t �
R

oPd\Pp
E � s ¼ 0;

jSsj o
ot ðDs � nsÞ � He þ Hd ¼ �jSsjjs � ns;

jRspj o
ot ðDsp � mspÞ � Hp þ Hs ¼ �jRspjjs � msp;

jRsqj o
ot ðDsq � msqÞ � Hs þ Hq ¼ �jRsqjjs � msq;

joPd \ oXj o
ot ðDd � ndÞ � Hu þ Hr ¼ �joPd \ oXjjd � nd:

8>>>>>>>>>>><>>>>>>>>>>>:
ð9Þ
By adding the second equation over all the primal polygons Pp such that Pp \Pd 6¼ ; we obtain
X
Pp

kPd \ Ppk
oBdp

ot
�

X
Rsp ;Rsq2oPd

ðjRspjEsp � ssp þ jRsqjEsq � ssqÞ þ joPd \ oXjEd � td ¼ 0:
Since, by definition, Bdp ¼ lpHd and ldkPdk ¼
P

Pp
lpkPd \ Ppk we obtain, thanks to (4)
ldkPdk
oHd

ot
�
X

Rs2oPd

jRsj
1
�es

csDs � ns þ ssEs � ts

� �
þ joPd \ oXjEd � td ¼ 0:
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The discretization of the boundary condition on oPd \ oX provides
adEd � td � bdHd ’ gd:
If ad ¼ 0 and bd 6¼ 0 then
Hd ¼ �
gd

bd
:

If ad 6¼ 0 then
Ed � td ¼
bd

ad
Hd þ

gd

ad
and we obtain
ldkPdk
oHd

ot
þ joPd \ oXj bd

ad
Hd �

X
Rs2oPd

jRsj
1
�es

csDs � ns þ ssEs � ts

� �
¼ �joPd \ oXj gd

ad
:

Since D ¼ eE, the discretized Maxwell–Ampere laws, that is the third, fourth and fifth equations of system (9), can be rewrit-
ten as
epjSsj o
ot ðEsp � nsÞ � He þ Hd ¼ �jSsjjs � ns ðin PpÞ;

eqjSsj o
ot ðEsq � nsÞ � He þ Hd ¼ �jSsjjs � ns ðin Pq if Ss 62 oXÞ;

epjRspj o
ot ðEsp � mspÞ � Hp þ Hs ¼ �jRspjjs � msp ðin PpÞ;

eqjRsqj o
ot ðEsq � msqÞ � Hs þ Hq ¼ �jRsqjjs � msq ðin Pq if Ss 62 oXÞ:

8>>><>>>: ð10Þ
Thanks to (3) the last two equations of (10) read
epcspjRspj
o

ot
ðEs � tsÞ � epsspjRspj

o

ot
ðEsp � nsÞ � Hp þ Hs ¼ �jRspjjs � msp;

eqcsqjRsqj
o

ot
ðEs � tsÞ � eqssqjRsqj

o

ot
ðEsq � nsÞ � Hs þ Hq ¼ �jRsqjjs � msq:
Then using the first two equations of (10) results in
epcspjRspj o
ot ðEs � tsÞ � ssp

jRsp j
jSs j ðHe � HdÞ � Hp þ Hs ¼ �cspjRspjjs � ts;

eqcsqjRsqj o
ot ðEs � tsÞ � ssq

jRsq j
jSs j ðHe � HdÞ � Hs þ Hq ¼ �csqjRsqjjs � ts:

8<: ð11Þ
By adding these equations we obtain, thanks to (2)
eskQ sk
o

ot
ðEs � tsÞ þ

1
2
jSsjðHq � HpÞ �

1
2

ssjRsjðHe � HdÞ ¼ �kQ skjs � ts:
For a boundary primal side Ss for which Hq ¼ Hs we would obtain
eskQ sk
o

ot
ðEs � tsÞ þ

1
2
jSsjðHs � HpÞ �

1
2

ssjRsjðHe � HdÞ ¼ �kQ skjs � ts:
The discretization of the boundary condition on the side Ss provides
asEs � ts � bsHs ¼ gs:
If as 6¼ 0 and bs ¼ 0 then
Es � ts ¼
gs

as
:

If bs 6¼ 0 then
Hs ¼
as

bs
Es � ts �

gs

bs
and we obtain
eskQ sk
o

ot
ðEs � tsÞ þ

1
2
jSsj

as

bs
Es � ts �

1
2
jSsjHp �

1
2

ssjRsjðHe � HdÞ ¼ �kQ skjs � ts þ
1
2
jSsj

gs

bs
:

At the end, the system (9) results in
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lpkPpk oHp
ot þ

P
Ss2oPp

jSsjEs � ts ¼ 0;

ldkPdk oHd
ot �

P
Rs2oPd

jRsj 1
�es

csDs � ns þ ssEs � ts

� �
¼ 0 ðxd 62 oXÞ;

Hd ¼ � gd
bd
ðxd 2 oX;ad ¼ 0Þ;

ldkPdk oHd
ot þ joPd \ oXj bd

ad
Hd �

P
Rs2oPd

jRsj 1
�es

csDs � ns þ ssEs � ts

� �
¼ �joPd \ oXj gd

ad

ðxd 2 oX;ad 6¼ 0Þ;
kQ sk o

ot ðDs � nsÞ � 1
2 csjRsjðHe � HdÞ ¼ �kQ skjs � ns;

joPd \ oXj o
ot ðDd � ndÞ � Hu þ Hr ¼ �joPd \ oXjjd � nd ðxd 2 oXÞ;

eskQ sk o
ot ðEs � tsÞ þ 1

2 jSsjðHq � HpÞ � 1
2 ssjRsjðHe � HdÞ ¼ �kQ skjs � ts ðSs 62 oXÞ;

Es � ts ¼ gs
as
ðSs 2 oX; bs ¼ 0Þ;

eskQ sk o
ot ðEs � tsÞ þ 1

2 jSsj as
bs

Es � ts � 1
2 jSsjHp � 1

2 ssjRsjðHe � HdÞ ¼ �kQ skjs � ts þ 1
2 jSsj gs

bs

ðSs 2 oX;bs 6¼ 0Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð12Þ
4.2. Time-discretization: the leap-frog scheme

Consider (12). The leap-frog scheme provides the following full discretization of the Maxwell equation (5)
lpkPpkHnþ1
p ¼ lpkPpkHn

p � Dt
P

Ss2oPp

jSsjE
nþ1

2
s � ts ¼ 0;

ldkPdkHnþ1
d ¼ ldkPdkHn

d þ Dt
P

Rs2oPd

jRsj 1
�es

csDnþ1
2

s � ns þ ssEnþ1
2

s :ts

� �
ðxd 62 oXÞ;

Hnþ1
d ¼ � gnþ1

d
bd

ðxd 2 oX; ad ¼ 0Þ;

ldkPdk þ Dt
2 joPd \ oXj

� � bd
ad

Hnþ1
d ¼ ldkPdk � Dt

2 joPd \ oXj
� � bd

ad
Hn

d

þDt
P

Rs2oPd

jRsj 1
�es

csD
nþ1

2
s � ns þ ssE

nþ1
2

s :ts

� �
� DtjoPd \ oXj g

nþ1
2

d
ad

ðxd 2 oX;ad 6¼ 0Þ;

joPd \ oXjDnþ1
2

d � nd ¼ joPd \ oXjDn�1
2

d � nd � DtðHn
u � Hn

r Þ � joPd \ oXjjn
d � nd ðxd 2 oXÞ;

kQ skD
nþ1

2
s � ns ¼ kQ skD

n�1
2

s � ns þ 1
2 DtcsjRsjðHn

e � Hn
dÞ � DtkQ skj

n
s � ns;

eskQ skE
nþ1

2
s � ts ¼ eskQ skE

n�1
2

s � ts � 1
2 DtjSsjðHn

q � Hn
pÞ þ 1

2 DtssjRsjðHn
e � Hn

dÞ � DtkQ skj
n
s � ts

ðSs 62 oXÞ;

Enþ1
2

s � ts ¼ g
nþ1

2
s
as

ðSs 2 oX;bs ¼ 0Þ;

eskQ sk þ Dt
4 jSsj as

bs

� �
Enþ1

2
s :ts ¼ eskQ sk � Dt

4 jSsj as
bs

� �
En�1

2
s � ts þ 1

2 DtjSsjHn
p þ 1

2 DtssjRsjðHn
e � Hn

dÞ

�DtkQ skj
n
s � ts þ DtjSsj g

n
s

bs
ðSs 2 oX;bs 6¼ 0Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ
4.2.1. Gauss’ law
As it has been noticed for the initial continuous system (5), and as it could be proved for the space-discretized system

(12), one can check that in the fully discretized system (13), the discretized Gauss laws are satisfied at any time, provided
they are satisfied at the initial time and if both following discretized charge conservation laws hold (for the proof, see Section
5.4):
kPpkq
nþ1

2
p ¼ kPpkq

n�1
2

p � Dt
P

Ss2oPp

jSsjjn
s � ns;

kPdkq
nþ1

2
d ¼ kPdkq

n�1
2

d � Dt
P

Rsp ;Rsq2oPd

ðjRspjjn
s � msp þ jRsqjjn

s :msqÞ � DtjoPd \ oXjjn
d � nd:

8>>><>>>:

For satisfying these equations, note that we can choose the following approximations of the continuous charge and current
densities
qnþ1
2

p ¼ 1
kPpk

Z
Pp

qnþ1
2; qnþ1

2
d ¼ 1

kPdk

Z
Pd

qnþ1
2
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and
jn
s � ns ¼

1
Dt

1
jSsj

Z nDtþDt
2

nDt�Dt
2

Z
Ss

j � ns;

jn
s :ðjRspjmsp þ jRsqjmsqÞ ¼

1
Dt

Z nDtþDt
2

nDt�Dt
2

Z
Rsp

j � msp þ
1
Dt

Z nDtþDt
2

nDt�Dt
2

Z
Rsq

j � msq;

jn
d � nd ¼

1
Dt

1
joPd \ oXj

Z nDtþDt
2

nDt�Dt
2

Z
oPd\oX

j � n:
4.2.2. Energy law and stability
For the sake of simplicity, consider a homogeneous media for which: ep ¼ eq ¼ e and lp ¼ lq ¼ l, and suppose that

Es � ts ¼ 0 for all boundary sides (perfect conductor boundary condition). The following equality holds (see Section 5.4 for
the proof)
1
Dt

l
4

X
Pp

kPpkðHnþ1
p Þ2 þ

X
Pd

kPdkðHnþ1
d Þ2

0@ 1A� X
Pp

kPpkðHn
pÞ

2 þ
X
Pd

kPdkðHn
dÞ

2

0@ 1A24 35
þ 1

Dt
e
2

X
Qs

kQ skE
nþ3

2
s :Enþ1

2
s �

X
Qs

kQ skE
nþ1

2
s � En�1

2
s

 !
¼ �

X
Ss

kQ sk
ðjnþ1

s þ jn
s Þ

2
� Enþ1

2
s : ð14Þ
In this expression one recognizes an approximation of the integrated energy equation (7).
By using such an energy approach we find the following stability condition (see the Appendix for the proof):
cDt 6
ffiffiffi
2
p

min
Q s

jSsjmin
r2

sp

csp
s2

sp þ
c2

sp

r2
sp

 !1
2

� ssp

24 35; r2
sq

csq
s2

sq þ
c2

sq

r2
sq

 !1
2

� ssq

24 358<:
9=;

0@ 1A ð15Þ
with
rsp ¼ min csp
jRspj
jSsj

;
1
2

� �
; rsq ¼ min csq

jRsqj
jSsj

;
1
2

� �
:

For arbitrary cells such that, for all Ss; ssp ¼ ssq ¼ 0 and csp ¼ csq ¼ 1 (orthogonality of primal and dual edges), we would
obtain
cDt 6

ffiffiffi
2
p

2
min 2 min

Ss
jRspj;2 min

Ss 62oX
jRsqj;min

Ss
jSsj

� �
: ð16Þ
A comparison of such a CFL condition with those of standard schemes is provided in Section 6.
5. An equivalent formulation based on discrete differential operators

As said in the introduction, a recent point of view developed in [51–53] for the discretization of various partial differ-
ential equations consists in replacing the continuous differential operators by discrete ones defined on arbitrary meshes
thanks to an appropriate choice of discrete scalar and vector fields. We shall show that this formulation is equivalent
to that given in Section 4.2 and that it also enables to derive properties of the scheme exposed in Sections 4.2.1 and
4.2.2. For the sake of simplicity, we present this formulation in the case of electromagnetic propagation in the vacuum,
although heterogeneous media may also be considered. The notations employed in what follows are the same as those
given in Sections 2 and 4.

5.1. Definitions of discrete scalar and vector fields and scalar products

We shall consider here scalar fields defined over both primal and dual cell and on boundary primal sides. A discrete scalar
field B is given by its values ðBp;Bd;BsÞ, respectively, on primal cells Pp, dual cells Pd, and boundary sides Ss. We define the
following discrete scalar product and associated norm on the primal and dual meshes
hA;BiPP :¼ 1
2

X
p

kPpkApBp þ
X

d

kPdkAdBd

 !
and jBj2PP :¼ hB;BiPP: ð17Þ
A discrete vector field E is given by its values (Es;Ed), respectively, on diamond-cells Q s and boundary dual cells (see Fig. 3).
We define the following discrete scalar product and associated norm on a diamond mesh:
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hF;EiQ :¼
X

s

kQ skFs � Es and jEj2Q :¼ hE;EiQ : ð18Þ
We also define a discrete scalar product of the traces of B and E � t on the boundary by
hB;E � tioX;h :¼ 1
2

X
Ss2oX

jSsjBsEs � ts þ
X

xd2oX
joPd \ oXjBdEd � td

 !
: ð19Þ
5.2. Definition of discrete differential operators

In order to discretize Maxwell’s equations, we define discrete differential operators which are the discrete counterparts of
the continuous operators that appear in Eq. (5). Let ðEs;EdÞ be a given vector field defined like explained in Section 5.1. We
define its discrete divergence over primal and dual cells by (see Fig. 3 for the notations)
ðrP
h � EÞp :¼ 1

kPpk
X

Ss2oPp

jSsjEs � ns ð20Þ
and by
ðrP
h � EÞd :¼ 1

kPdk
X

Rs2oPd

ðjRspjEs � msp þ jRsqjEs � msqÞ þ joPd \ oXjEd � nd

 !
: ð21Þ
We stress that oPd \ oX is non-empty if and only if xd 2 oX. Given a continuous vector field E, it is quite easy to see that
equalities (20) and (21) are the exact mean values of r � E over the primal and dual cells, respectively, provided the discrete
field Es verifies for all Q s
jSsjEs � ns ¼
Z

Ss

EðrÞ � ns dr; ð22Þ

Es � ðjRspjmsp þ jRsqjmsqÞ ¼
Z

Rsp

EðrÞ � msp drþ
Z

Rsq

EðrÞ � msq dr ð23Þ
and provided Ed verifies for all xd 2 oX
Ed � nd ¼
1

joPd \ oXj

Z
oPd\oX

E � nðrÞdr: ð24Þ
Note that (22) and (23) uniquely defines the vector Es on each diamond cell Q s. In the same way, let ðEs;EdÞ be a given vector
field. We define its discrete (scalar) curl over primal and dual cells by
ðrP
h � EÞp :¼ 1

kPpk
X

Ss2oPp

jSsjEs � ts ð25Þ
and by
ðrP
h � EÞd :¼ 1

kPdk
�
X

Rs2oPd

ðjRspjEs � ssp þ jRsqjEs � ssqÞ þ joPd \ oXjEd � td

 !
: ð26Þ
Given a continuous vector field E, it is quite easy to see that equalities (25) and (26) are the exact mean values ofr� E over
the primal and dual cells, respectively, provided E and ðEs;EdÞ verify relations analogous to (22), (24), where the various vec-
tors n and m are changed into their respective associated tangential vectors t and s.

Moreover, given a scalar field B ¼ ðBp;Bd;BsÞ, defined like explained in Section 5.1, we also need the discrete (vector) curl
of B, which we define over the diamond-cells of the mesh by
ð$Q
h � BÞs :¼ 1

2kQ sk
½ðBe � BdÞðjRspjssp þ jRsqjssqÞ þ ðBp � BqÞjSsjts�: ð27Þ
Given a continuous scalar field B which is P1 over Q s, it is an easy matter to show that this formula is the exact curl of B
provided Be ¼ BðxeÞ;Bd ¼ BðxdÞ;Bp ¼ BðnpÞ and Bq ¼ BðnqÞ. Moreover, we have
Z

Ss

ð$Q
h � BÞs � ns ¼ Be � Bd
and
 Z
Rsp

ð$Q
h � BÞs � msp þ

Z
Rsq

ð$Q
h � BÞs � msq ¼ Bp � Bq:
If Ss 2 oX, there is a slight modification which reads
ð$Q
h � BÞs :¼ 1

2kQ sk
½ðBe � BdÞjRspjssp þ ðBp � BsÞjSsjts�: ð28Þ
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Finally, for boundary points xd 2 oX, we define the normal component of ð$Q
h � BÞd by the following quantity (see Fig. 3 for

the notations):
joPd \ oXjð$Q
h � BÞd � nd :¼ ðBu � BrÞ: ð29Þ
We note that the boundary scalar product (19) and the definition of the discrete divergence (21) and scalar curl operator (26)
for boundary dual cells slightly differ from those given in [51,53]. Indeed, in these references, the values of Ed associated with
the boundary nodes xd were expressed as a linear combination of the values Es associated with the neighbouring boundary
edges, while in this paper the values of Ed are independent degrees of freedom. However, we may easily adapt the proofs
found in these references to show the following properties:
rP
h � ð$

Q
h � BÞp ¼ 0 8Pp; rP

h � ð$
Q
h � BÞd ¼ 0 8Pd; ð30Þ

hrPP
h � E;BiPP ¼ hE;$

Q
h � BiQ þ hE � t;BioX;h: ð31Þ
5.3. Application to Maxwell’s equations

The magnetic field unknowns Bp;Bd;Bs are located, respectively, on primal, dual cells and boundary primal sides while the
electric field unknowns Es;Ed are located, respectively, on diamond cells and boundary dual cells. We use a leap-frog scheme
for the time-discretization and the discrete operators defined in Section 5.2 for the space-discretization. This results in
Bnþ1
p ¼ Bn

p � DtðrP
h � Enþ1=2Þp; ð32Þ

Bnþ1
d ¼ Bn

d � DtðrP
h � Enþ1=2Þd; ð33Þ

eEnþ1=2
s ¼ eEn�1=2

s þ Dt
1
l
ð$Q

h � BnÞs � Dtjn
s ; ð34Þ
where jn
s is a suitable approximation of j. Moreover, the computed electric field Enþ1=2 should ideally verify
eðrP
h � E

nþ1=2Þp ¼ qnþ1=2
p ; ð35Þ

eðrP
h � E

nþ1=2Þd ¼ qnþ1=2
d ; ð36Þ
where ðqnþ1=2
p ;qnþ1=2

d Þ is a suitable approximation of q. Thanks to the definitions of the discrete differential operators given in
Section 5.2, it is quite easy to see that when ep ¼ ed ¼ e and lp ¼ ld ¼ l, then Eq. (32) is the same as the first line in (13), Eq.
(33) is the same as the second line in (13) thanks to (4) and to the definition of �es, and Eq. (34) is the same as the sixth and
seventh equalities in (13), thanks to (4) and the definitions of cs and ss.

5.4. Properties of the discretized system

Proposition 1. In the case of mutually orthogonal primal and dual meshes, the system (32)–(34) splits into two independent sub-
systems corresponding to two covolume schemes. Specializing to a rectangular Cartesian mesh, we obtain two Yee schemes on
primal and dual meshes.

Proposition 2. If the initial conditions verify the discrete Gauss law given by (35) and (36) and if the discrete charge and current
densities verify the following discrete charge conservation equation
qnþ1=2
p ¼ qn�1=2

p � DtðrPP
h � j

nÞp; ð37Þ

qnþ1=2
d ¼ qn�1=2

d � DtðrPP
h � j

nÞd ð38Þ

for each n 2 N, then the scheme preserves the discrete Gauss law for each n 2 N.

Proof. We have just to apply the discrete primal (resp. dual) divergence to (34) and use the property (30). h

Proposition 3. Suppose that: q ¼ 0; j ¼ 0 and E � t ¼ 0 on oX (similar computations may be performed for other boundary con-
ditions provided they are properly discretized). The following discrete electromagnetic energies are nonincreasing:
En
1 ¼

1
2

ejEnþ1=2j2Q þ
1
l
hBn;Bnþ1iPP

� �
;

En
2 ¼

1
2

ehEnþ1=2;En�1=2iQ þ
1
l
jBnj2PP

� �
:

Proof. From (34) we have
e
Enþ1=2 � En�1=2

Dt
;Enþ1=2 þ En�1=2

* +
Q

¼ 1
l
hrQ

h � Bn;Enþ1=2 þ En�1=2iQ ;
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so that according to the discrete Green formula (31):
eðjEnþ1=2j2Q � jE
n�1=2j2Q Þ ¼ Dt

1
l
½hBn;rPP

h � Enþ1=2iPP þ hB
n;rPP

h � En�1=2iPP � hB
n; ðEnþ1=2 þ En�1=2Þ � tioX;h�:
The first line in the right-hand side of the previous expression may be transformed thanks to (32), (33), and since Enþ1=2 � t
vanishes on the boundary, the result is proved for E1. A similar proof may be performed for E2 starting from (32), (33) and
using (31) the other way around. Since the discrete energies En

1 and En
2 are nonincreasing, proving that at least one of them is

a positive definite quadratic form of the variables Enþ1=2 and Bn is sufficient to prove the stability of the scheme. Indeed, this
proves that there exists a positive constant Ch such that for all n 2 N
jEnþ1=2j2D þ jB
nj2PP 6 ChjEnj 6 ChjE0j: ð39Þ
This energy approach has previously been used, for example, in [31]. The stability of the scheme is proved in the Appendix
using E2 and leads to the CFL condition (15). Since the computations with E1 are even more tedious, we skip the details and
only give the final result. h

Proposition 4. Under the CFL condition below, the scheme is stable
cDt 6min
min

p
max min

Ss2oPpnoX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jRs jkPpk cos hs

np jSs jð1þj sin hs jÞ

q
; min

Ss2oPpnoX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jRs jkPpk cos hs
ð1þj sin hs jÞjoPp j

q� �
min

d
max min

Rs2oPd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jSs jkPdk cos hs

nd jRs jð1þj sin hs jÞ

q
; min
Rs2Pd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jSs jkPdk cos hs
ð1þj sin hs jÞjoPd j

q� �
26664

37775; ð40Þ
where np (resp., nd) is the number of inner sides of the primal cell Pp (resp., of the dual cell Pd), joPpj (resp., joPdj) is the sum of the
lengths of the inner sides of Pp (resp., Pd), and hs is the angle between ts and ms defined by ms :¼ jRsp jmspþjRsq jmsq

knpnqk
(see Fig. 3 for the

notations).
6. Comparison with other methods

6.1. About the stability condition

The condition (40) is set on primal and dual cells, while condition (15) was set on diamond-cells. It is easy to verify that, in
the case of a square mesh with edge length h, conditions (40) and (16) degenerate into that of Yee’s scheme cDt 6 h

ffiffi
2
p

2 . In the
case of a regular triangular mesh (equilateral triangles with edge length h), both conditions yield cDt 6 h

ffiffi
6
p

6 . In both cases, the
condition is thus less restrictive, by a factor

ffiffiffi
2
p

, than that given by the cell-centered first-order upwind finite volume scheme,
see [64, Theorem 2.1]. On the other hand, the CFL condition for the vertex-centered first-order upwind finite volume scheme
on a regular (primal) triangular mesh is cDt 6 h

2, which is slightly better than that of the present scheme.

6.2. About the complexity of the algorithm

Let Np;Nd;Ns be the number of primal cells, dual cells and primal sides. The total number of degrees of freedom (dof) in
the present scheme is Np þ Nd þ 2Ns, while it would be Np þ Ns for a Yee-type (covolume) scheme, 3Np for the cell-centered
(upwind) finite volume scheme, and 3Nd for the vertex-centered (upwind) finite volume scheme. Note that Ns equals
Np þ Nd � 1þ Nh, where Nh is the number of holes in the domain X, thanks to Euler’s formula. As far as triangular meshes
are concerned, there holds Np ¼ Oð2NdÞ, while for quadrangular structured meshes, Np ¼ OðNdÞ. Thus on triangular (resp.
on quadrangular structured) meshes, the present scheme involves Oð9Np=2Þ (resp. Oð6NpÞ) dof, while the cell-centered finite
volume scheme involves 3Np (resp. 3Np) dof, the vertex-centered finite volume scheme involves Oð3Np=2Þ (resp. 3Np) dof,
and the covolume scheme involves Oð5Np=2Þ (resp. Oð3NpÞ) dof.

Moreover, computing Bnþ1;Enþ1=2 from the known values of Bn;En�1=2 does not require a very complex algorithm, since the
operatorsrP

h�;rP
h � and $Q

h� used in (32)–(34) have fairly simple stencils, which are usually given by (or may easily be con-
structed from) the output of standard mesh generators.

Of course, the comparison between various schemes should not be limited to issues concerning their complexity and
number of unknowns on a given mesh, but should include a discussion on the overall computational effort required to obtain
a prescribed accuracy on a prescribed family of meshes. As far as the comparison with a standard FDTD scheme (possibly
with boundary fixes to account for non orthogonal boundaries) is concerned, the following point has to be mentioned: Since
on Cartesian rectangular meshes the scheme we present here decouples into two independent FDTD schemes (the first being
cell-centered and the second vertex-centered), we may not expect any accuracy improvement over a standard FDTD scheme
on such a mesh, while doubling the number of unknowns will double the price of the algorithm. The present method will
thus be useful in applications where the use of Cartesian rectangular meshes is not possible (because the mesh is given,
for example through a coupling with another model) or expensive (because highly refined, possibly non-conforming, cells
are needed in the vicinity of a singularity or of a stiff source term).
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These are actually the cases treated in the next section: distorted and non-conforming given families of meshes (Section
7.1) and highly refined non-conforming meshes in the vicinity of a stiff source term (Section 7.2).

7. Numerical experiments

Define the discrete L2-norm by
kuk2 ¼
X

p

kPpku2
p þ

X
d

kPdku2
d

 !1
2

and the discrete L1-norm by
kuk1 ¼max
p;d
ðjupj; judjÞ:
Let N be the number of cells and define by h the following characteristic length associated with the mesh
h ¼ kXk
N

� �1
2

:

The relative errors between the exact solution un
e and the approximated one un

h at time nDt are defined by
en
h;2 ¼

kun
h � un

ek2

kun
ek2

; en
h;1 ¼

kun
h � un

ek1
kun

ek1
:

The relative errors between the times T1 and T2 are defined by
eh;2 ¼
P

T16nDt6T2
kun

h � un
ek

2
2P

T16nDt6T2
kun

ek
2
2

 !1
2

; eh;1 ¼
P

T16nDt6T2
kun

h � un
ek1P

T16nDt6T2
kun

ek1
: ð41Þ
The order of the method is given by
order ¼ logðe2hÞ � logðehÞ
log 2

:

The three benchmarks we present aim at illustrating the good behavior of the method when Maxwell’s equations (possibly in
inhomogeneous media or with stiff solutions) have to be approximated on distorted or non-conforming meshes. Compari-
sons with the Yee scheme have been carried out (whenever rectangle meshes are used, since for such meshes our method
coincides with the Yee scheme).

In what follows, all physical quantities are expressed in the MKSA units. The values e0 ¼ 8:8542� 10�12 and
l0 ¼ 1:2566� 10�6 are the permittivity and the permeability of the free space and c ¼ ðe0l0Þ

�1
2 is the velocity of light.

7.1. Eigenmodes of an inhomogeneous unit square

Suppose that X ¼ ½0;1�2 and consider the model problem (5). Given k ¼ l ¼ 2, let us define the pulsation
x ¼ p
k2 þ l2

el

 !1
2

and the permittivity and permeability
e ¼ e0; l ¼ l0 if x 6 0:5;
e ¼ 2e0; l ¼ 1

2 l0 if x > 0:5:

(

In order to get a simple analytic solution we have chosen e and l such that the speed of light is the same in both media. Other
arbitrary e and l could be chosen as well. The initial fields are
B0 ¼ lH0 ¼ cosðpkxÞ cosðplyÞ if x 6 0:5;

B0 ¼ lH0 ¼ 1
2 cosðpkxÞ cosðplyÞ if x > 0:5;

D0 ¼ eE0 ¼ 0;
q ¼ 0; j ¼ 0;
a ¼ 1; b ¼ 0; g ¼ 0 ðperfect conductor boundary conditionÞ

8>>>>>>><>>>>>>>:

and the solution of (5) is
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B ¼ lH ¼ cosðpkxÞ cosðplyÞ cosðxtÞ if x 6 0:5;
B ¼ lH ¼ 1

2 cosðpkxÞ cosðplyÞ cosðxtÞ if x > 0:5;
Dx ¼ eEx ¼ � lp

l0x
cosðpkxÞ sinðplyÞ sinðxtÞ;

Dy ¼ eEy ¼ kp
l0x

sinðpkxÞ cosðplyÞ sinðxtÞ:

8>>><>>>:

We will use eight groups of meshes of the unit square that respect the boundary (x ¼ 0:5) between both media (see Fig. 4: for
all these meshes the primal points are the centers of gravity of the convex primal cells and the midpoints of the interior diag-
onal of the non-convex quadrilaterals).

1. Square meshes.
2. Non-conforming rectangle meshes.
3. Distorted convex quadrilateral meshes (the refinement is performed by dividing each quadrilateral into four

quadrilaterals).
4. Distorted triangular meshes constructed by dividing each quadrilateral of the previous meshes into four triangles.
5. Right triangle meshes.
6. Randomly distorted quadrilateral meshes (the interior vertices are randomly moved). Note that such meshes can include

non-convex quadrilaterals.
7. Randomly distorted triangle meshes (the interior vertices are randomly moved).
8. Strongly non-convex quadrilateral meshes, constructed from the previous square meshes in such a way that the center
ðx; yÞ of each motif of four squares is replaced by ðxþ Dxð1þ cos hÞ; yþ Dyð1þ sin hÞÞ;Dx ¼ Dy being the length of the
square sides and h ¼ 0:25p.

We have chosen
T ¼ 20� 2p
x
’ 4:71734� 10�8:
The relative errors for the magnetic field H between the times 38 p
x and 40 p

x are given in Tables 1 and 2 and deserve some
discussion (similar errors have been obtained for the electric field D). The numerical analysis of this scheme has been con-
ducted and will be reported elsewhere; one may also refer to Ref. [7] since it considers the special case of orthogonal primal–
dual meshes. The theoretical results we obtain help us understand (at least partially) the numerical results presented in Ta-
bles 1 and 2. Indeed, we may prove that, under the uniformity with respect to h of the constant Ch in (39), the L2 norm of the
error in the computed solution at the final time of the simulation may be bounded by a term which typically behaves like
CðhÞha, where h is the mesh step size, h is the largest (in absolute value) in the angles hsp and hsq (see Fig. 3), when s runs over
all possible edges of the mesh. When h tends to p=2, i.e. when the mesh is very distorted, CðhÞ tends to þ1, otherwise it is
bounded. We are able to prove that the order of convergence a is at least 1 for general meshes and at least 1:5 if the meshes
are more regular or tend to be more regular when refined. Here, more regular means that the diamond-cells are almost all
parallelograms (note that boundary diamond-cells cannot be parallelograms, which explains the order 1.5 instead of 2) and
that the vertices xd of the primal mesh are the centroids of their associated dual cells Pd. These theoretical results are prob-
ably suboptimal in view of the numerical results which indicate second-order convergence; however they help us under-
stand the somehow ‘‘erratic” convergence on the random quadrangular and triangular meshes, since these families
experience large variations in the values of their angles h, which implies large variations in the function CðhÞ.

Fig. 5 displays the magnetic field H ¼ HðTÞ for the eight meshes displayed on Fig. 4 (with 802 cells). The slight oscillations
that may be observed on some meshes are an effect of the visualization due to underlying distorted meshes (the same phe-
nomenon is observed with the analytic solution).

7.2. Radiation from a dipole

Suppose that X ¼ ½�1;1�2. Let r ¼ ðx2 þ y2Þ
1
2; r0 ¼ 0:25 and FðrÞ the function such that FðrÞ ¼ 1 if r 6 r0 and FðrÞ ¼ 0 if

r > r0. Given
x ¼ p
k2 þ l2

e0l0

 !1
2

and
B0 ¼ l0H0 ¼ cosðpkxÞ cosðplyÞ þ 4
e0l0x2

r2
0ðr

4
0�r4�r2

0r2Þ
ðr2

0�r2Þ4
exp � r2

r2
0�r2

� �
FðrÞ;

D0 ¼ e0E0 ¼ 0;

jx ¼ 2
l0

r2
0

ðr2
0
�r2Þ2

1þ 4
e0l0x2

2r6þ4r2
0r4�7r4

0r2þ2r6
0

ðr2
0
�r2Þ4

� �
exp � r2

r2
0�r2

� �
FðrÞy cosðxtÞ;

jy ¼ � 2
l0

r2
0

ðr2
0
�r2Þ2

1þ 4
e0l0x2

2r6þ4r2
0r4�7r4

0r2þ2r6
0

ðr2
0
�r2Þ4

� �
exp � r2

r2
0�r2

� �
FðrÞx cosðxtÞ;

a ¼ 1; b ¼ 0; g ¼ 0 ðperfect conductor boundary conditionÞ;

8>>>>>>>>>><>>>>>>>>>>:



Fig. 4. Coarse meshes of the unit square.
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Table 1
Relative errors for the magnetic field H

h�1 Square
meshes

Order Non-conforming quadrilateral
meshes

Order Distorted quadrilateral
meshes

Order Distorted triangle
meshes

Order

eh;2

10 9:66� 10�1 1:52� 100 1:43� 100

20 2:58� 10�1 1.90 6:00� 10�1 1.34 1:23� 100 0.22 1:51� 100

40 6:36� 10�2 2.02 1:51� 10�1 1.98 3:39� 10�1 1.86 5:16� 10�1 1.55
80 1:47� 10�2 2.11 3:65� 10�2 2.05 8:29� 10�2 2.03 1:28� 10�1 2.01
160 2:44� 10�3 2.57 7:90� 10�3 2.20 1:94� 10�2 2.09 3:06� 10�2 2.06
320 5:95� 10�4 2.05 7:66� 10�4 3.36 3:66� 10�3 2.40 6:45� 10�3 2.25

eh;1
10 8:56� 10�1 1:66� 100 2:07� 100

20 2:28� 10�1 1.90 5:70� 10�1 1.54 1:35� 100 0.22 1:69� 100

40 5:66� 10�2 2.01 1:43� 10�1 1.99 3:63� 10�1 1.86 5:14� 10�1 1.71
80 1:31� 10�2 2.11 3:43� 10�2 2.05 8:93� 10�2 2.03 1:27� 10�1 2.01
160 2:23� 10�3 2.55 7:48� 10�3 2.20 2:12� 10�2 2.09 3:07� 10�2 2.04
320 5:40� 10�4 2.04 8:21� 10�4 3.19 4:28� 10�3 2.40 6:69� 10�3 2.20

Table 2
Relative errors for the magnetic field H

h�1 Right triangle
meshes

Order Randomly quadrilateral
meshes

Order Randomly triangle
meshes

Order Non-convex quadrilateral
meshes

Order

eh;2

10 1:17� 100

20 7:63� 10�1 2:82� 10�1 2.06 1:06� 100 1:33� 100

40 2:05� 10�1 1.89 8:13� 10�2 1.79 2:01� 10�1 2.39 1:01� 100 0.39
80 5:05� 10�2 2.02 1:06� 10�2 2.94 9:71� 10�2 1.05 2:70� 10�1 1.90
160 1:16� 10�2 2.12 9:92� 10�3 0.09 2:25� 10�2 2.11 6:63� 10�2 2.03
320 1:98� 10�3 2.54 1:15� 10�3 3.11 6:24� 10�3 1.85 1:53� 10�2 2.11

eh;1
10 1:14� 100

20 9:12� 10�1 2:76� 10�1 2.05 1:29� 100 1:63� 100

40 2:42� 10�1 1.91 7:90� 10�2 1.84 2:50� 10�1 2.37 1:07� 100 0.60
80 5:96� 10�2 2.02 1:22� 10�2 2.69 1:06� 10�1 1.23 2:82� 10�1 1.92
160 1:38� 10�2 2.10 9:83� 10�3 0.31 2:67� 10�2 1.98 6:95� 10�2 2.02
320 2:42� 10�3 2.52 1:97� 10�3 2.32 9:01� 10�3 1.57 1:64� 10�2 2.08
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the solution of (5) is
B ¼ l0H ¼ cosðpkxÞ cosðplyÞ þ 4
e0l0x2

r2
0ðr

4
0�r4�r2

0r2Þ
ðr2

0�r2Þ4
exp � r2

r2
0
�r2

� �
FðrÞ

� �
cosðxtÞ;

Dx ¼ e0Ex ¼ � lp
l0x

cosðpkxÞ sinðplyÞ � 2
l0x

r2
0y

ðr2
0�r2Þ2

exp � r2

r2
0�r2

� �
FðrÞ

� �
sinðxtÞ;

Dy ¼ e0Ey ¼ kp
l0x

sinðpkxÞ cosðplyÞ þ 2
l0x

r0x
ðr2

0
�r2Þ2

exp � r2

r2
0�r2

� �
FðrÞ

� �
sinðxtÞ:

8>>>>>>>><>>>>>>>>:

Note that such functions have strong peaks near the center of X: Fig. 6 shows the value of the magnetic field along the axis
y ¼ 0.

We consider the subdomain X0 ¼ ½�1=4;1=4� and we uniformly mesh X nX0 with squares of size h, and X0 with squares
of size h0 ¼ h=2p. Fig. 7 displays such a mesh with p ¼ 2.

First, we set h ¼ 1=32 and let h0 tend to zero as long as the error significantly decreases. As a second test, we fix
h0 ¼ 1=128 and coarsen the mesh covering X nX0 until the error starts to increase significantly. We let the simulations
run over 10 periods of the wave and display in Fig. 8 the relative L2 norms of the errors eh;2ðBÞ and eh;2ðEÞ, defined by
(41), averaged over the last period, with T1 ¼ 9T and T2 ¼ 10T .

We plot the curves representing the first test with plain lines and those representing the second test with dashed lines.
According to these figures, we can deduce that the best refinement ratio for this example is h=h0 ¼ 4. So we choose to

study the L2 convergence on a family of meshes having that refinement ratio: we set h=h0 ¼ 4 and let h and h0 tend to zero.
Fig. 9 shows that the scheme has a second-order convergence for such kind of meshes.



Fig. 5. Isovalues of Hðt ¼ 40 p
xÞ on the meshes displayed on Fig. 4 with 802 cells.
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Fig. 6. Values of B along y ¼ 0.

Fig. 7. A mesh with h ¼ 1=8 and h0 ¼ 1=32.
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Fig. 8. L2 norm of the error on E (left) and B (right) according to p in logarithmic scale.
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7.3. Ingoing wave

Suppose that X ¼ ½�1;1�2. Given
x ¼ p
k2 þ l2

e0l0

 !1
2

and
B0 ¼ 0; D0 ¼ e0E0 ¼ 0;
q ¼ 0; j ¼ 0;

a ¼ 1; b ¼ l0
e0

� �1
2
; g ¼ �2 sin x x

c � t
� �� �

on the left side;

a ¼ 1; b ¼ l0
e0

� �1
2
; g ¼ 0 on the right side;

a ¼ 1; b ¼ 0 ; g ¼ 0 on the other sides;

8>>>>>>>>><>>>>>>>>>:
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Fig. 10. Comparison of parasitic reflexions on a Cartesian mesh (left) and a locally refined mesh (right).

9384 F. Hermeline et al. / Journal of Computational Physics 227 (2008) 9365–9388
one can check that
B ¼ l0H ¼ 1
c sin x x

c � t
� �� �

;

Dx ¼ e0Ex ¼ 0;
Dy ¼ e0Ey ¼ e0 sin x x

c � t
� �� �

8><>:

is the solution of (5).

We have chosen k ¼ l ¼ 1 and we let the wave enter during one period only. The intensity of the magnetic field on a ver-
tex of the mesh is plotted in Fig. 10. The left part of this figure concerns the propagation of the wave on square mesh, while
the right part concerns a non-conforming locally refined mesh like that displayed in Fig. 7. We repeated the test on different
points and meshes, and we get similar results. This shows that local refinement does not amplify the amplitude of parasitic
reflexions.
8. Concluding remarks

We have proposed a second-order accurate finite volume type method that allows nearly arbitrary meshes to be consid-
ered for solving Maxwell’s equations in two space dimensions. Thanks to this property, non-conforming meshes, particularly,
can be used without inconvenient.

Since both the normal and the tangential components of the electromagnetic field are taken into account, we think that
such a method is well suited for dealing with anisotropic media. Moreover it could be a qualified candidate for approximat-
ing other wave equations like the acoustics equations or the linearized Saint–Venant equations with the Coriolis force term
on arbitrary meshes.
Appendix A. The 3-D case

In this appendix we outline what could be a generalization of our method to the 3-D case. Finite volume methods of this
type have been proposed and tested in [65–67].

Like the 2-D case let us consider both a primal mesh and a dual mesh that is made up from the primal mesh. Let denote by
(see Fig. 11):
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Fig. 11. A sample 3-D primal mesh made up of two pyramids and two hexahedra (solid lines) and a face of its dual mesh (dashed lines).
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– Ff ðUsÞ the primal (dual) faces,
– Rf ðSsÞ the dual (primal) sides associated with the primal (dual) faces Ff ðUsÞ,
– nf ðmsÞ the unit outward normal vector through the face Ff ðUsÞ,
– tsðsf Þ the unit tangent vector along the side SsðRfÞ.

Taking the flux of Maxwell’s equations (Faraday and Ampere–Maxwell laws) over each primal F f and dual face Us and
using the Stokes theorem results in8
@
@t

R R
Ff

Bf � nf

� �
þ
P

Ss2@Ff

R
Ss

Es � ts ¼ 0;

@
@t

R R
Us

Bs � ms

� �
þ

P
Rf2@Us

R
Rf

Ef � sf ¼ 0;

@
@t

R R
Ff

Ef � nf

� �
�
P

Ss2@Ff

R
Ss

Bs � ts ¼ �
R R

Ff
j � nf ;

@
@t

R R
Us

Es � ms

� �
�

P
Rf2@Us

R
Rf

Bf � sf ¼ �
R R

Us
j � ms:

>>>>>>>>>>>><>>>>>>>>>>>>:

The main unknowns of this system are Bf � nf ;Bs � ms;Ef � nf , Es � ms while the auxiliary unknowns Es � ts;Ef � sf , Bs � ts;Bf � sf , may
be calculated from the main unknowns. For example the whole vector Bf (Ef ) can be calculated in the neighborhood of the
face F f from the main unknowns Bf � nf (Ef � nf ) and Bs � ms (Es � ms) for Ss 2 oFf , by using a least square method. Similarly the
whole vector Bs (Es) can be calculated in the neighborhood of the face Us from the main unknowns Bs � ms (Es � ms) and Bf � nf

(Ef � nf ) for Rf 2 oUs.
Note that such a method preserves the divergence. Furthermore it boils down in two independent methods when the

primal and dual meshes are orthogonal (nf ¼ sf and ms ¼ ts), the first of these being the method proposed in [3,6].

Appendix B. Stability condition

The proof of the stability condition (15) is now detailed. Consider a homogeneous medium and suppose that j ¼ 0. The
total electromagnetic energy which appears in (14) may obviously be split into magnetic and electric contributions.

Splitting the sums over primal and dual cells into sums over half diamond-cells, provides the following expression of the
discrete magnetic energy at time ðnþ 1ÞDt0 1
1
4
l
X

Pp

kPpkðHnþ1
p Þ2 þ

X
Pd

kPdkðHnþ1
d Þ2@ A ¼ 1

4
l
X
Qsp

kQ spkðHnþ1
p Þ2 þ 1

4
l
X
Q sq

kQ sqkðHnþ1
q Þ2 þ 1

8
l
X
Q sp

kQ spkððHnþ1
d Þ2

þ ðHnþ1
e Þ2Þ þ 1

8
l
X
Qsq

kQ sqk ðHnþ1
d Þ2 þ ðHnþ1

e Þ2
� �

:

As far as the discrete electric energy is concerned, starting from (13) and setting N
nþ1

2
s ¼ Enþ1

2
s � ns and T

nþ1
2

s ¼ Enþ1
2

s � ts, leads to
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ekQ skN
nþ1

2
s ¼ ekQ skN

n�1
2

s þ 1
2 DtcsjRsjðHn

e � Hn
dÞ;

ekQ skT
nþ1

2
s ¼ ekQ skT

n�1
2

s � 1
2 DtjSsjðHn

q � Hn
pÞ þ 1

2 DtssjRsjðHn
e � Hn

dÞ:

8<: ð42Þ
Consider now the equations in (42) written at time nþ 3
2 and multiply them, respectively, by
1
2

N
nþ1

2
s and

1
2

T
nþ1

2
s :
We obtain
e 1
2 kQ skN

nþ3
2

s N
nþ1

2
s ¼ 1

2 ekQ skðN
nþ1

2
s Þ2 þ 1

4 DtcsjRsjðHnþ1
e � Hnþ1

d ÞNnþ1
2

s ;

1
2 ekQ skT

nþ3
2

s T
nþ1

2
s ¼ 1

2 ekQ skðT
nþ1

2
s Þ2 � 1

4 DtjSsjðHnþ1
q � Hnþ1

p ÞTnþ1
2

s þ 1
4 DtssjRsjðHnþ1

e � Hnþ1
d ÞTnþ1

2
s ;

8<: ð43Þ
From (43) we deduce the following expression of the discrete electric energy at time ðnþ 1ÞDt
1
2

e
X
Q s

kQ skE
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2
s � Enþ1

2
s ¼ 1

2
e
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Q s
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2
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2
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2
s T
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2
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1
2

e
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2
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2
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þ 1
2

e
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2
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2
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4
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2

s þ 1
4
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e � Hnþ1

d ÞNnþ1
2

s

� 1
4
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X
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2

s þ 1
4

Dt
X
Rsp

sspjRspjðHnþ1
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d ÞTnþ1
2

s þ 1
4

Dt
X
Rsq

ssqjRsqjðHnþ1
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d ÞTnþ1
2

s :
Thus, we obtain the following expression of the total electromagnetic energy at time ðnþ 1ÞDt
Z Z
X

Unþ1 ¼ 1
4
l
X
Q sp
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4
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8
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Let a and b be arbitrary values such that 0 < a; b < 1. Thanks to (1) the previous expression can be rewritten as
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Therefore sufficient conditions for the total energy to be positive are, for all Q sp
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that is (c being the velocity of light such that elc2 ¼ 1)
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By looking for the values a and b which maximize
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;

we find the condition (15).
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